Image Interpolation Using Kernel
Regression
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Background (1) — Kernel Regression

* Kernel Regression (KR)

— Popularized for image processing by Hiro Takeda
(supervised by Peyman Milanfar) from University of
California Santa Cruz

— Dated technique (2007)

* |nteresting because...
— Simple

— Proposed a complete image/video regression model
and framework

— Model was extended in 2010 by Takeda for video data

e Applied to video up-conversion research.



Background (2) — Similar Concepts

e Takeda’s flavour of KR is similar to:

— Moving least-squares

e Reconstruct continuous surface from unorganized points
(e.g. point cloud)

— Normalized convolution

* Generate regularly spaced points from irregularly sampled
data, and then perform convolution

— Bilateral filter

* Noise-reduction filter that preserve edges, uses Gaussian
and Euclidean distance for weights

— Edge-directed interpolation
* Anisotropic filtering that applies smooth data along “edges”



Top-Level View

Takeda’s image interpolation KR will be covered in this presentation

* Each sampled measurement y; is represented by z(x),

Vz(x), H{z(x)}, ... (higher order terms), as well as the relative
distance from the position of interest x to each of the y;

The position of the
sampled measurements
are solid

The hollow point is the
position to perform
interpolation
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Top-Level View
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KR Theory - Assumptions

* There exists a continuous signal upon which the
input data were sampled from

— Otherwise continuous mathematics cannot be
justified to operate on a set of data points

* This continuous signal is assumed to
— Accurately describe the data
— Real and infinitely differentiable
e Otherwise Taylor’s theorem does not hold

 The analysis window chosen for a coordinate x is
a valid Taylor local neighbourhood to the
continuous underlying signal



KR Theory — Regression Model

e Regression with additive error
e yvi =z(x;)+¢g ,i=1,...,P
— Measured datais y;€ R
— Coordinates of y; is x; € R?
— P is the # of measured data in the neighbourhood
— Model discrepancy erroris €; € R
— Regression function is z(*)

— z(*) can be non-linear, but it should be representable
as a linear combination of some chosen basis



KR Theory — Taylor Expansion

e 1D Taylor’s theorem for real analytic functions:

, 4 t—aq)2
FO=f(@+f' (@)t — a)+ 2= 4 .
— a is some point in the neighbourhood of ¢t
 Apply the theorem to the 2D regression:
z(x;) = z(x)
+H{Vz(x)} (x; — x)
+(x = 0OTH{z(O}(x; — %)
 The goalis to estimate z(x) , Vz(x),H{z(x)}, ..

— Inthe 1D case, f(a), f'(a), f''(a), ... is to be estimated.

— For signal interpolation, € is assumed to be a white and zero-mean
noise, and z(x) is assigned to be the data value y at coordinate x

— A second order kernel regression would use a Taylor approx. of order 2
« j.e.estimateonly z(x), Vz(x), and H{z(x)}




KR Theory — Compact Representation

« After some matrix manipulation, the Taylor expansion of z(x) could
be written as

z(x;) = z(x) + {Vz(x)} (x; — x) + (x; — x)TH{z(x)}(x; — x) + -+

= Bo + B (x; — x) + B3 vech{(x; — x)(x; — x)T} + -

wherevech([b dD [a b d]’

e Parameters of interest for estimation are
— [y, the predicted signal value at coordinate x

)
— B =Vz(x) = Fz}(:) Z(x)] the signal’s gradient at coordinate x

- b=

02%z(x) 2622(36) azz(x)T
dx? dx,0x,  0x5

, components of the Hessian



KR Theory — Optimization Formulation

 Formulate the N -order estimation of {ﬁn}ﬁzo as an optimization

problem.

e Assume sample measurements y that are farther away from the
desired coordinate x will be less significant in estimation of z(x).

— Represent this by using a weights on each of the y;’s
 Takeda chose to use a weighted least-squares approach .

P
min.g,) ) 1= Bo + B (i =) + B vechl(x, —x)(x; = )"}

o 2 Ks (o — %)
* The kernel function Ks(t) was chosen to be a Gaussian centered at
t, and S modifies the support of K by a linear transformation S.
— i.e. K can be scaled and rotated by the matrix S
* This formulation has an analytical solution for {8, }h_,
 Takeda referred to the case of S = I as classical KR.



Examples (1) — Interpolation (1)

Classic KR The downsampled image
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Examples (1) — Interpolation (2)

Classic KR The upscaled image by second order steering kernel regression, RMSE=7.452
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Examples (1) — Interpolation (3)

Original The upscaled image by second order steering kernel regression, RMSE=7 452
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Examples (1) — Interpolation (4)

Improved Edge-directed: Jeremy Ranger

The upsca led image by secon d order steering kernel regression, RMSE=7 452
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Examples (1) — Interpolation (5)

Statistical: Jeremy Ranger
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Examples (1) — Interpolation (6)

TOta | Va riation : H ussein Aly The upscal led image by secan d order steer ing kernel regress ion, RMSE=7 492
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Examples (1) — Interpolation (7)

Total variation: Hussein Aly

20



SKR Theory — Img. Orientation Est. (1)

e Assumes the local signal
orientation of the data
should be perpendicular to
the gradient of each of the
sampled measurement y’s

— Think “orientation” as
“direction parallel to edges”

 Maximize the average angle
between the orientation
vector and the gradient

Takeda et. al (2007)



SKR Theory — Img. Orientation Est. (2)

 Max. average angle of all sample measurements
within the analysis window

e Least-squares formulation of task yields a convex
optimization problem:

* ZXjEWi(aTgi)z =a’ ijEWi(gig;T) a= aTDia
— Whereg; is Vz(xj), the analysis window W; is centered at
the position of the current sample under consideration y;
— a € R? is the orientation vector
max., a'D;a
subject to ala=1
* Normalized norm condition added for simple solution



SKR Theory — Lagrange Multipliers

Lagrange multipliers
L(a,\) =a'D;a —A(a'a — 1)

oL . .
Set o= 0 gives D;a = Aa

— a must be an eigenvector of D;that corresponds
to A, an eigenvalue of D;

Then a’D;a = a’ha = A

The max. occurs when A is the largest eigenvalue

Singular-value decomposition (SVD) can find A and a



SKR Theory — Compute Eigenvectors

D; = Zoxew; VZ(x) [Vz(x)]"

‘ 22(x))\* 02(x;) 92(x;)|

_ ijEWi( deq ) ijEWi de;, Oey

- 0z(x;) 9z(x;) 02(x))\?
_ZXJEWi de, dey ijEWi (a—ez) |
o) ][ -

— dey az(xJ'EWi) az(xJ'EWi) gt 11T pg

aZ(Xjewl.) deq de, B
3e, : :

* ¢4 and e,: horizontal and vertical spatial directions, respectively

e Fact: The right sin%ular vectors of M (call it V)from a SVD are the
eigenvectors of M' M



SKR Theory — “Steering” Support

 To modify the original support of the kernel function K such that it
“steers” along the orientation of the local data

— Takeda’s work had the original support of K being circular in shape

— Would need an elliptical shape along the edges after the steering
operation

» Rotate and scale the function support of K
* Use tools from algebra; let:

— T:U - U be a linear transformation from a vector space to itself,
— B={by,...,b,} and E = {eq, ..., e, } are different basis sets for U
e Then the matrices of T w.r.t. A and w.r.t. E are related by:
[T(E)]g = [Bleg[T(B)]5[Bl5"

— (Note): Two square matrices F and N are said to be similar if there is
an invertible P, such that N = PFP~1



SKR Theory — “Steering” Support

IT(E)]g = [BleglT(B)]g [B]El

Let T represent the entire function support steering operation
(rotation and scaling of original support), and let B be an
orthonormal basis set that have one of its basis vectors parallel to
the estimated local signal orientation vector a
— In other words, let B be the right singular vectors, IV from the previous
SVD decomposition of D;

Then 7 could then be an intuitive diagonal scaling matrix, that is meant
to operate on the basis V:

D 0
[T(B)le = Ci=viVi |, 1
Pi
T
p; = % , Vi = (}\17\;”2) , 1, T, and T are regularization parameters
2 1

Takeda decided the scaling p; of the oriented support should be a
function of the A‘s of the SVD of D;

— Corresponds to the energy or confidence of the estimated orientation



SKR Theory — Steering Kernel

* Instead of using S; = I, Vi as the lmear transform on

the kernel function, use S; = hC

— to describe the ellipse as a rotated and scaled version of a
circular support

 Takeda used a 2D Gaussian as the kernel function K.
Written explicitly for this choice of S;:

Jdet(C) { (g —x)"Ci(x; — x)}
exp { —

Ksi(xi = %) = =5 212

* This looks very similar to a bivariate Gaussian
distribution with it’s “footprint” controlled by a
covariance matrix



SKR Theory — Algorithm Procedure

Center the analysis window to the nearest sample measurement y,
to the desired interpolation coordinate x

— The coordinate origin of the window would be located at the position
coordinate of y,. Call this position x,.

Obtain an estimate of the gradient of the y’s within the window
— Run classical KR but pass x, as the interpolation coordinate.

— This essentially estimates the betas of all y’s within the analysis
window.

— Store the ;s (gradient term) of these y’s .
Compute and store the steering kernel support matrix C; for all y’s
in the entire image

For each interpolation positions x, perform steering KR by using the
classical KR but with the weight (kernel) function K computed from

the stored C; that corresponds to the y’s within the local analysis
window.



Example (2) — Inpainting (1)

The iraqularly downsampled image (85% of the original pixsls are missing) The reconstructed image by second order classic kemel regression, RMSE=9.577
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Example (2) — Inpainting (2)

The reconstructed image by second order steering kernel regression, RMSE=E.1247 The reconstructed image by second order classic kemel regression, RMSE=9.577
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Example (2) — Inpainting (2)

The reconstructed image by second order steering kernel regression, RMSE=E.1247 Original

* Note: | wonder how this relates to compressed sensing?
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Example (3) - Denoise

The original image The denoised image by iterative steering kernel regression, 3 iterations
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Discussion (1)

e This framework is a typical regression problem.

— The regression function could used other forms of
image representation tools (i.e. other basis) for
specific types of images

— However, the use of Taylor approximation allowed
both the signal value and its nth-order derivatives to
be jointly estimated

* This is desirable for applications where motion estimation
(ME) algorithms are often inaccurate

e Errorsin the ME algorithm would have less chance of
creating visually unbearable up-conversion artefacts



Discussion (2)

* Euclidean distances were used in the optimization
formulation

— Quadratic objective functions heavily penalize outliers to
the assumed model; thus regions of the image that are not
well-represented by the Taylor approx. have trouble

* Could introduce a penalty term (the prior term in
Markov image frameworks) in the optimization
formulation at the expense of foregoing an analytical
solution (the weighted least-squares)

— Since Hussein Aly’s total variation image magnification

framework from 2004 was able to recover more details in
certain situations



Summary

 The KR technique for digital image processing was
introduced this tutorial seminar

— This is a very clean and intuitive regression framework

* Even though the modelling of an image as a continuous
analytical function is unrealistic, it allowed the use of
Taylor approximation

— The Taylor approximation does not require regularly
sampled measurements

* One solution to the local signal orientation estimation
problem of the was also introduced

— Takeda used a least-squares formulation, with hints of PCA



References

H. Takeda, P. van Beek, and P. Milanfar, “Spatiotemporal video
upscaling using Motion-Assisted Steering Kernel (MASK)
regression,” in High-quality visual experience: creation, processing
and interactivity of high-resolution and high-dimensional video
signals (M. Mrak, M. Grgic, and M. Kunt, eds.), pp. 245-274,
Springer, 2010

H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image
processing and reconstruction,” IEEE Transactions on Image
Processing, vol. 16, no. 2, pp. 349-366, 2007.

Jeremy Ranger and Hussein Aly’s sample MATLAB code for image
interpolation

Hiro Takeda, “Kernel Regression-Based Image Processing Toolbox
for MATLAB,
http://users.soe.ucsc.edu/~htakeda/KernelToolBox.htm



